## STRAND: FINANCE

## Unit 2 Simple and Compound Interest

## TEXT

Contents

Section<br>2.1 Simple Interest<br>2.2 Compound Interest<br>2.3 Compound Interest Formula<br>2.4 Savings: Annual Equivalent Rate (AER)

## 2 Simple and Compound Interest

### 2.1 Simple Interest

When money is deposited in a bank or building society account, it commonly attracts interest; in a similar way, a borrower must normally pay interest on money borrowed. The rate of interest is usually (but not always) quoted as a rate per cent per year. At the time of writing a typical rate is $1.5 \%$ per annum for money deposited and $1 \%-2 \%$ per annum for money borrowed. Up-to-date rates are available from finance organisations.

There are two basic ways of calculating the amount of interest paid on money deposited: simple interest and compound interest.
If simple interest is paid, interest is calculated only on the principal $£ P$, the amount deposited (the original capital sum). The interest $£ I$ payable after one year years at rate $r \%$ per annum is given by the formula

$$
I=\frac{r}{100} \times P
$$

and the total amount owing can then be calculated by adding $I$ to $P$.

## Worked Example 1

Natasha invests $£ 250$ in a building society account. At the end of the year her account is credited with $2 \%$ interest. How much interest had her $£ 250$ earned in the year?

## Solution

Interest $=2 \%$ of $£ 250$

$$
\begin{aligned}
& =\frac{2}{100} \times £ 250 \\
& =£ 5
\end{aligned}
$$

## Worked Example 2

Alan invests $£ 140$ in an account that pays $r \%$ interest. After the first year he receives $£ 4.20$ interest.
What is the value of $r$, the rate of interest?

## Solution

After one year, the amount of interest is given by

$$
\begin{aligned}
\frac{r}{100} & \times £ 140=£ 4.20 \\
r & =\frac{100 \times 4.20}{140} \\
& =\frac{420}{140} \\
& =3
\end{aligned}
$$

So the interest rate is $3 \%$.

## Exercises

1. Calculate (a) the interest payable and (b) the total amount owing on the following deposits at simple interest.
(i) $£ 300$ borrowed for 5 years at $8 \%$ p.a.
(ii) $£ 1000$ invested for 4 years at $9.5 \%$ p.a.
(iii) $£ 50$ borrowed for 2 years at $18 \%$ p.a.
(iv) $£ 2500$ invested for 6 months at $8.75 \%$ p.a. $(T=0.5$ years $)$
(v) $£ 45000$ borrowed for 2 weeks at $15.5 \%$ p.a.

The following questions relate to simple interest.
2. What is the actual rate of interest if $£ 4000$ deposited for 3 years attracts interest of £1440?
3. For how long would $£ 500$ have to be left in an account paying $4 \%$ interest p.a. to give a balance of $£ 600$ ?
4. A school's rich benefactor wants to deposit a certain sum in an account paying interest at $10.5 \%$ so that it will produce interest of $£ 1200$ per year, to pay for scholarships. How much should she deposit?
5. A boy borrows $£ 1.00$ from his sister and promises to pay back $£ 1.10$ a week later. What is this as an annual rate of interest?
6. For how long should a depositor leave a sum in a $6.25 \%$ p.a. savings account in order to earn the same amount in interest, assuming the interest is withdrawn each year?

### 2.2 Compound Interest

Simple interest is very rarely used in real life: almost all banks and other financial institutions use compound interest.

This is when interest is added (or compounded) to the principal sum so that interest is paid on the whole amount. Under this method, if the interest for the first year is left in the account, the interest for the second year is calculated on the whole amount so far accumulated.

## Worked Example 1

I deposit $£ 250$ in a high-earning account paying $9 \%$ compound interest and leave it for three years. What will be the balance on the account at the end of that time?

## Solution

| Balance after 0 years | $£ 250.00$ |
| :--- | ---: |
| Interest: $9 \%$ of $£ 250.00=£ 22.50$ |  |
| Balance after 1 year: | $£ 272.50$ |
| Interest: $9 \%$ of $272.50=£ 24.52$ |  |
| Balance after 2 years | $£ 297.02$ |

Interest: $9 \%$ of $£ 297.02=£ 26.73$
Balance after 3 years $=£ 323.75$
(Note that, for simplicity, all results here are rounded to the nearest penny; computer calculations are often made to several decimal places.)

## Worked Example 2

Jodie invests $£ 1200$ in a bank account which pays interest at the rate of $4 \%$ per annum. Calculate the value of her investment after 4 years.

## Solution

At an interest rate of $4 \%$ per annum, the value of her investment after one year is

$$
\begin{aligned}
£ 1200 & +\frac{4}{100} \times £ 1200 \\
& =1.04 \times £ 1200 \\
& =£ 1248
\end{aligned}
$$

After two years, the investment is worth

$$
1.04 \times £ 1248=£ 1297.92
$$

and after three years,

$$
1.04 \times £ 1297.92=£ 1349.84
$$

At the end of four years, the value of Jodie's investment will be

$$
1.04 \times £ 1349.84=£ 1403.83
$$

## Exercises

By working from year to year as in the worked example above, calculate the amount accumulated after three years at compound interest in the following cases.

1. $£ 500$ deposited at $10 \%$ p.a.
2. $£ 1000$ borrowed at $15 \%$ p.a.
3. $£ 150$ deposited at $6 \%$ p.a.
4. $£ 1200$ borrowed at $8.5 \%$ p.a.
5. $£ 25000$ borrowed at $13.75 \%$ p.a.

## 2.3 <br> Compound Interest Formula

It should already be clear that for long periods, the year-on-year method of calculating compound interest is somewhat cumbersome, but fortunately there is a formula.
Suppose the compound interest rate is $9 \%$. The amount at the start of each year is treated as $100 \%$, and adding $9 \%$ to $100 \%$ gives $109 \%$. So adding $9 \%$ to any amount of money is equivalent to multiplying that amount by 1.09 . Check that

$$
\begin{aligned}
& £ 250.00 \times 1.09=£ 272.50 \\
& £ 272.50 \times 1.09=£ 297.02, \text { and } \\
& £ 297.02 \times 1.09=£ 323.75
\end{aligned}
$$

More generally, adding $r \%$ to a sum of money corresponds to multiplying by $\left(1+\frac{r}{100}\right)$. If the money is left untouched for $T$ years, then the original amount $£ P$ will be multiplied by $\left(1+\frac{r}{100}\right)$, so that $£ A$ is the total amount at the end of that time,

$$
A=P\left(1+\frac{r}{100}\right)^{T}
$$

(This formula actually works for fractional values of $T$ as well as for whole numbers. The amount of interest, if it is needed, is calculated by subtracting the principal, $£ P$, from the total amount.)

## Worked Example 1

You borrow $£ 500$ for four years and agree to pay $6 \frac{1}{2} \%$ compound interest for this period. What amount will you have to pay back?

## Solution

Using the formula,

$$
\begin{aligned}
A & =500 \times 1.065^{4} \\
& =500 \times 1.28646 \ldots \\
& =643.233 \ldots
\end{aligned}
$$

So you will have to pay back $£ 643.23$, to the nearest penny.
The same formula can be used to calculate the principal sum, the interest rate, or the length of time, as the following examples show.

## Worked Example 2

How much must Sam deposit in a $6 \%$ savings account if he wants it to amount to $£ 120$ after two years?

## Solution

Using the formula

$$
120=P \times 1.06^{2}
$$

giving

$$
\begin{aligned}
P & =120 \div 1.06^{2} \\
& =106.799
\end{aligned}
$$

He must deposit $£ 106.80$.

## Worked Example 3

The value of a computer depreciates at a rate of $20 \%$ per annum. A new computer costs $£ 1200$. What will be its value after
(a) 2 years
(b) 6 years
(c) 10 years?

Solution
(a) Value $=£ 1200\left(1-\frac{20}{100}\right)^{2}$

$$
\begin{aligned}
& =£ 1200 \times\left(\frac{4}{5}\right)^{2} \\
& =£ 768
\end{aligned}
$$

(b) Value $=£ 1200 \times\left(\frac{4}{5}\right)^{6}$

$$
=£ 314.57
$$

(c) Value $=£ 1200 \times\left(\frac{4}{5}\right)^{10}$

$$
=£ 128.85
$$

## Worked Example 4

What rate of interest will allow $£ 350$ to grow to $£ 500$ in five years?

## Solution

From the formula,

$$
\begin{array}{cc} 
& 500=350 \times\left(1+\frac{r}{100}\right)^{5} \\
\Rightarrow \quad & \left(1+\frac{r}{100}\right)^{5}=500 \div 350 \\
= & =1.42857 \ldots \\
\Rightarrow \quad & 1+\frac{r}{100}=\sqrt[5]{1.42857 \ldots}\left(\text { or } 1.42857^{\frac{1}{5}}\right) \\
& =1.0739 \\
& \quad r=7.39 \ldots
\end{array}
$$

The interest rate is approximately $7.4 \%$

## Worked Example 5

For how long must a sum be deposited in an account paying $14 \%$ compound interest in order to double in value?

## Solution

$$
\begin{aligned}
& 2 P=P \cdot 1.14^{T} \\
\Rightarrow & 1.14^{T}=2 \\
\Rightarrow \quad & T \log 1.14=\log 2 \\
\Rightarrow \quad & T=\log 2 \mid \log 1.14 \\
& =(0.3010 \ldots) \mid(0.0569 \ldots) \\
& =5.29
\end{aligned}
$$

The deposit must be left for 5.3 years but as interest is paid yearly, it would have to be left for 6 years.
(Note that after 5 years, the multiplier would be $(1.14)^{5} \approx 1.925$ but after 6 years $(1.14)^{6} \approx 2.195$.)

## Exercises

1. Use the formula to calculate the total amount accumulated at compound interest in the following cases.
(a) $£ 2000$ deposited for 5 years at $7 \%$ p.a.
(b) $£ 600$ borrowed for 8 years at $12 \%$ p.a.
(c) $£ 500$ deposited for 20 years at $8.25 \%$ p.a.
(d) $£ 10000$ borrowed for 6 months at $14 \%$ p.a.
(e) $£ 100$ deposited for 18 months at $9.5 \%$ p.a.
2. Calculate the principal sum which, if deposited at $9.5 \%$ compound interest, will grow to $£ 400$ after three years.
3. Calculate the annual rate of compound interest that will allow a principal sum, to double in value after five years.
4. How long would it take for $£ 1000$ to grow to $£ 1500$ if deposited at $8 \%$ p.a. compound interest?
5. I borrow $£ 5000$ and agree to pay back $£ 6000$ after 18 months. What is the annual rate of compound interest?
6. For how long must you leave an initial deposit of $£ 100$ in a $12 \%$ savings account to see it grow to $£ 1000$ ?
7. A car costs $£ 9000$ and depreciates at a rate of $20 \%$ per annum. Find the value of the car after 3 years.
8. John invests $£ 500$ in a building society with interest of $8.4 \%$ per annum. Karen invests $£ 200$ at the same rate.
(a) How many years does it take for the value of Karen's investment to become greater than $£ 300$ ?
(b) How many years does it take for the value of John's investment to become greater than
(i) $£ 700$
(ii) £900?
9. If the rate of inflation were to remain constant at $3 \%$, find the price that a jar of jam, currently priced at $£ 1.58$, would be in 4 years' time.
10. The population of a third world country is 42 million and growing at $2.5 \%$ per annum.
(a) What size will the population be in 3 years' time?
(b) In how many years' time will the population exceed 50 million?
11. The value of a car depreciates at $15 \%$ per annum. Bill keeps a car for 4 years and then sells it.
If the car originally cost $£ 6000$, find
(a) its value after 4 years,
(b) the selling price as a percentage of the original value.

### 2.4 Savings: Annual Equivalent Rate (AER)

The examples in the previous section are all based on interest being paid yearly but, in reality, interest can be paid biannually, monthly or even daily!
Provided the interest is compounded, this will mean a small increase in the balance of the account. This is shown in the next example.

## Worked Example 1

The nominal interest rate on an account is $6 \%$ per annum. After one year, what is the total value of an initial deposit of $£ 1000$ if interest is paid
(a) annually, at the end of the year
(b) twice a year, at six-monthly intervals
(c) every month?

## Solution

(a) Value $=£ 1000 \times 1.06$

$$
=£ 1060.00
$$

(b) If interest is paid every six months, the rate becomes $3 \%(6 \% \div 2)$ so that, after the first 6 months, the value is

$$
£ 1000 \times 1.03=£ 1030.00
$$

and after the second six months,

$$
£ 1030 \times 1.03=£ 1060.90
$$

(c) If paid monthly, the rate is $\frac{6 \%}{12}=0.5 \%$ so the monthly multiplier is 1.005 and the value after 12 months is given by

$$
£ 1000 \times(1.005)^{12}=£ 1061.68
$$

You can see from the Worked Example above that there is a small gain from having interest paid more than once per year. Of course, the gain is more significant if the original investment is a large sum of money, and also if the interest is paid daily!

To compare savings accounts where interest is paid at regular intervals we use the term Annual Equivalent Rate (AER). Overall, this means that interest can be compounded more than once in a year depending on the number of times that interest payments are made. The AER is calculated as

$$
r=\left(1+\frac{i}{n}\right)^{n}-1
$$

where $r$ is the AER, $n$ the number of times in a year that interest is paid and $i$ the 'nominal' yearly interest rate.

## Worked Example 2

What is the AER for an account with nominal interest rate $6 \%$ and interest payments made each month?

## Solution

Here $i=0.06, n=12$, so

$$
\begin{aligned}
r & =\left(1+\frac{0.06}{12}\right)^{12}-1 \\
& =(1+0.005)^{12}-1 \\
& =(1.005)^{12}-1 \\
& \approx 0.06168
\end{aligned}
$$

That is, $r=6.17 \%$ (as shown by the calculation in part (c) of Worked Example 1).

## Worked Example 3

Kate invests $£ 5000$ in a savings account that pays interest monthly at a nominal rate of 4.2\%.
(a) What is the balance of the account at the end of 3 years?
(b) What is the AER for Karen's investment?

## Solution

(a) The monthly rate is $\frac{4.2 \%}{12}=0.35 \%$, so that after 3 years, there have been 36 payments of interest, and the balance is

$$
\begin{aligned}
£ 5000 \times(1+0.0035)^{36} & \approx £ 5000 \times 1.1340 \\
& =£ 5670.16
\end{aligned}
$$

(b) The AER formula gives the rate

$$
\begin{aligned}
r & =\left(1+\frac{0.042}{12}\right)^{12}-1 \\
& =(1+0.0035)^{12}-1 \\
& =0.04282
\end{aligned}
$$

So the $\mathrm{AER} \approx 4.28 \%$

Note that, if $P$ is the initial balance of the account and $A$ the balance after $n$ years, then

$$
A=P(1+R)^{n}
$$

where $R$ is the APR.

## Worked Example 4

If an account with an initial balance of $£ 2500$ grows to $£ 3500$ after 4 years, what is the AER?

## Solution

If $R=\mathrm{AER}$, then

$$
3500=2500(1+R)^{4}
$$

So

$$
(1+R)^{4}=\frac{3500}{2500}=1.4
$$

and

$$
1+R=(1.4)^{\frac{1}{4}}
$$

So

$$
\begin{aligned}
1+R & \approx 1.087757 \ldots, \text { and } \\
R & \approx 0.087757 \ldots
\end{aligned}
$$

Hence AER is $8.78 \%$
Check: $\quad £ 2500 \times(1+0.0878)^{4}=£ 2500 \times(1.0878)^{4}$

$$
=£ 3500.55
$$

## Exercises

1. The nominal rate of interest for a savings account is $9 \%$ per annum. If $£ 1000$ is invested in the account what will be the balance after one year if
(a) interest is paid once a year, at the end of the year
(b) interest is paid bi-monthly (once every two months)?
2. What is the AER for an account with nominal interest rate $8 \%$ and interest payments made every 3 months?
3. Sara invests $£ 4000$ in a savings account that pays interest at a nominal rate of $5.4 \%$, paid monthly.
(a) What is the AER for this investment?
(b) What is the balance of the account at the end of 5 years?
4. An investment of $£ 2750$ grows to $£ 4250$ in 5 years. Find the AER for this investment (as a percentage).
5. Liam invests $£ 3000$ in an account that pays interest quarterly (that is, every 3 months) at a rate of $0.6 \%$ per month.
(a) What is the AER for this account?
(b) What will be the balance of this account after one year?
(c) What will be the balance of this account after 5 years?
